Контрольная работа.

Контрольная работа

			План


2. Капиллярные методы определения вязкости.
3.  Первое  начало  термодинамики.  Изохорический   процесс.   Изобарический
   процесс. Теплоемкость.
4. Классицикация поверхностных явлений.
5. Методы получения грубодисперсных и мелкодисперсных систем.
6. Какие дисперсные системы  используются  и  получаются  в  полиграфическом
   производстве.
7.  Почему  в  офсетном  печатном   процессе   пробельные   элементы   могут
   замасливаться, а печатные элементы принимают краску?
Литература



Тепловое движение молекул  и внутреннее давление являются причиной свойства
текучих тел — внутреннего трения (вязкости). Это свойство можно определить
как сопротивление текучего тела (жидкости, газа и т.п.) перемещению его
частей относительно друг друга.

В жидкостях вязкость обусловлена преимущественно внутренним давлением, а в
газах — тепловое движение молекул. Этим объясняется характер зависимости
вязкости от температыры: у жидкости с повышением температуры вязкость
уменьшается, т.к. при этом уменьшается внутреннее давление, а у газов —
возрастает, поскольку при этом усиливается интенсивность перемещения
молекул газа из слоя в слой.
Для измерения вязкости пользуются приборами, называемыми вискозиметрами.
Широко распространены капиллярные вискозиметры, в которых вязкость
определяется по времени вытекания определенного объема жидкости через
капилляр. Один из капиллярных вискозиметров показан на рис. 1.1. При работе
с вискозиметром этого типа определяют время вытекания жидкости, заключенной
в объеме между метками 1 и 2.



    Термодинамика занимается изучение  форм  энергии,  вне  зависимости  от
положения исследуемого тела в пространстве. Этот вид  энергии  участвует  во
всех термодинамических  процессах,  т.е.  во  взаимопревращениях  теплоты  и
работы. Впервые эта форма энергии была описана немецкия  физиком  Клаузиусом
и  названа  внутренней  энергией.  Она  обозначается  буквами:   U   -   для
термодинамической системы в целом; u - для 1 кг массы гомогенной  системы  и
Um -  для  1  моль  вещества  однородной  системы.  Внутрення  энергия  тела
(термодинамической системы) представляет  собой  сумму  энергий  движения  и
взаимодействия всевозможных частиц, из которых она состоит: молекул,  ионов,
атомов, электронов, протонов, нейронов и т.п.
    U=Eк + Eп + Eм + Eя
    где Ек и Еп - кинетическая и потенциальная энергии частиц  тела;  Ем  -
энергия  взаимодействия  внутримолекулярных  частиц  тела;  Ея   -   энергия
взаимодействия внутриядерных частиц тела.
    Кинетическая  энергия  частиц  —  это  энергия  их  теплового  движения
(тепловая энергия).
    Потенциальная энергия частиц тела характерезует их взаимное  притяжение
(внутреннее давление).
    Энергия взаимодействия  внутримолекулярных  частиц  тела  характерезует
состав и строение его молекул и  изменяется  лишь  в  результате  химических
превращений вещества (химическая энергия).
    Энергия взаимодействия внутриядерных частиц тела характерезует состав и
строение  ядер  его  атомов  и  изменяется  лишь  при  ядерных  превращениях
вещества.
    Свойства внутренней энергии обобщаются в первом  законе  термодинамики,
известном как закон сохренения энергии: энергия может превращаться из  одной
формы  в  другую,  но  не  может  возникать  или  исчезать:  полноя  эенргия
изолированной системы постоянна.
    В  приложении  к   термодинамическим   системам,   т.е.   к   системам,
обменивающимся с окружающей средой энергией в формах теплоты и  механической
работы, удобнее следующие варианты формулировок:
    1. Изменение внутренней энергии системы равно  теплоте,  поступающей  в
       систему, за вычетом  работы,  совершенной  системой  над  окружающей
       средой:
       (U = Q - W,
    2. Теплота,  поступившая  в  систему,  расходуется  на  привращение  ее
       внутренней энергии и совершение работы над окружающей средой:
       Q = (U + W
    Q - сообщаемая системе теплота;
    W - работа, совершаемая системой над окружающей средой.

    Теплота, работа и внутренняя  энергия  "участвуют"  в  термодинамческих
процессах,  т.е.  являются  термодинамическими  функциями.  Проявляются  эти
свойства   в   конкретных   термодинамических   процессах:    изохорическом,
изохарическом, изотермическом и адиабатическом.
    Изохорический  процесс.  Если  система  отделена  от  окружающей  среды
жесткой оболочкой (механическая изоляция),  то  при  изменении  всех  прочих
параметров состояния (Р, Т и др.) объем ее остается постоянным (V-const).
    Изобарический  процесс.  Если  термодинамическую   систему   ограничить
невисомой подвижной оболочкой,  то  при  изменении  всех  прочих  параметров
состояния (V, T и др.) давление будет  равно  давлению  окружающей  среды  и
остается постоянным, если давление в среде не изменяется (Р-const).

    Из  свойст   внутренней   энергии   следует,   что   ее   изменения   в
термодинамическом процессе можно  определить  с  помощью  уравнения  первого
закона термодинамики. Для этого необходимо уметь определять значение  работы
W и теплоты Q изучаемого процесса.
    Работу находять, исходя из изменений, происходящих в окружающей среде в
результате рассматриваемого процесса.
    W = Fl
    где F - сила, действующая на  окружающую  среду  со  стороны  изучаемой
системы; l - длина пути перемещения границ изучаемой системы.
    Замечено, что при нагревании  тела  становятся  теплее.  Для  выражения
степени нагретости тел было введено понятие температуры,  изменение  которой
при нагревании предолагалось пропорциональным значению теплоты,  поступающей
в исследуемые тела
    Q = C (T
    где  Q  -  значение  полученной  исследуемым  телом   теплоты   (тплота
процесса); C- коэффициент пропорциональности;  (T  -  изменение  (повышение)
температуры исследуемого тела.
    Коэффициент  пропорциональности  С  в  данном  уравнении   был   назван
теплоемкостью.   Теплоемкость   характеризует   термодинамический   процесс,
протекающий  в  неизолированной  системе   и   сопровождающийся   изменением
температуры системы в  результате  теплообмена  ее  с  окружающей  средой  —
теплоемкость термодинамической системы равна теплоте процесса, в  результате
которого температура системы изменяется на 1 градус: C = Q / (T [Дж/К].



    5


К поверхностным явлениям относятся те эффекты и особенности
поведениявещества, которые наблюдаются на поверхностях раздела фаз.
Причиной поверхностных явлений служит особое состояние молекул в слоях
жидкостей и твердых тел, непосредственно прилегающих к поверхностям
раздела. Эти слои резко отличаются по многим физико-химическим
характеристикам (удельной энергии, плотности, вязкости, электрической
проводимости) от свойст фаз в глубине их объема.
    Поверхностное натяжение и  межмолекулярные  взаимодействия  внутри  фаз
обуславливают процессы смачивания и растека