Новости Словари Конкурсы Бесплатные SMS Знакомства Подари звезду
В нашей
базе уже
59876
рефератов!
Логин

Пароль

Лекции переходящие в шпоры Алгебра и геометрия 1180

Лекции переходящие в шпоры Алгебра и геометрия 1180.
Лекции переходящие в шпоры Алгебра и геометрия



1. Матрицы. Терминология и обозначения. Матрицей размера (mxn) называется набор m(n чисел - элементов м-цы Ai,j, записанных в виде прямоугольной таблицы: Набор аi1, ai2, ain - наз iтой строкой м-цы. Набор a1j, a2j, amj - jтым столбцом. М-ца размером 1хп - называется строкой, вектором; м-ца размером mx1 - столбцом. Если размерность пхп - матрица называется квадратной. Набор элементов а11, а22, апп образует главную диагональ м-цы. Набор а1п, а1,п-1, ап1 - побочную диагональ. М-ца все эл-ты, которой = 0 наз. нулевой. Квадратная м-ца, элементы главной диагонали которой равны 1, а все остальные - 0, называется единичной, обозн.: Е Матрицы: А(I,j) и B(I,J) называется равными, если равны их размеры и их элеме6нты в одинаковых позициях совпадают. 2. Действия с матрицами 1) Сложение Суммой м-ц А(I,j) и B(I,J) наз. м-ца С(I,J) элементы кот, выч по формуле: Сij=Aij+Bij (I=1...m, j = 1...n) C=A+B (размер всех м-ц: mxn) 2) умножение м-цы на число Произведение м-цы А = (Aij) размера mxn на число С называется матрица: B=(Bij) размера mxn, элементы кот, выч. по формуле: Вij=С(Aij (I=1...m, j = 1...n) В=С(А вычитание: С=А+(-)В = А-В 3) умножение м-ц А=(Aik), B=(Bkj) - квадратные м-цы порядка n. Произведением А на В называют м-цу С= (Сij) элементы, кот выч. по формуле: Сij = Ai1(B1j+... Ain(BnJ С=АВ. Можно записать так: Порядок сомножителей в матрице существенен: АВ не равно ВА Св-ва умножения м-цы: (АВ)С=А(ВС) А(В+С)=АВ+АВ, (А+В)С=АС+ВС Произведение двух прямоугольных матриц существует, если их внутренние размеры (число столбцов первой, и число строк второй) равны. 3. Порядки суммирования. Транспонирование м-цы Сумму Н всех элементов квадратной м-цы А можно вычислить 2 мя способами: 1. Находя сумму элементов каждого столбца и складывая полученные суммы: 2. Находя сумму элементов каждой строки и складывая эти суммы: отсюда вытекает, что порядок суммирования в двойной сумме можно менять. Матрица называется транспонированной по отношению к м-це А= Обозначается АТ. При транспонировании строки переходят в столбцы, а столбцы в строки и если А размером mxn, то АТ будет размером nxm Св-ва операции транспонирования. 1 (АТ)Т=А 2 (А+В)Т=АТ+ВТ 3 (СА)Т=САТ (С-число) 4 (АВ)Т=АТ(ВТ 4. Элементарные преобразования матрицы. 1 Переставление двух строк 2 Умножение строки на не равное 0 число В 3 Прибавление к строке матрицы другой ее строки, умноженной на число С. Также производят элементарные преобразования столбцов. 5. Матрицы элементарных преобразований. С элементарными преобразованиями тесно связаны квадратные матрицы элементарных преобразований. Они бывают следующих типов: 1 м-цы получающиеся из единичных путем перестановки двух любых строк например м-ца: получена перестановкой 2 и 4 строки 2 тип. м-цы получающиеся из единичной заменой диагонального элемента на произвольное не нулевое число: отличается от единичной элементом В во второй строке 3 тип отличающиеся лишь одним недиагональным не нулевым элементом: Основное св-во матриц элементарных преобразований Элементарное преобразование произвольной матрицы равносильно умножению этой м-цы на матрицу элементарных преобразований Элементарные преобразования строк м-цы А 1 умножение м-цы А на м-цу 1 типа слева переставляет строки с номерами I,j 2 Умножение м-цы А на м-цу второго типа слева равносильно умножению j строки м-цы А на число В 3 прибавление к jстороке м-цы А ее iтой строки, умноженной на число С равносильно умножению м-цы А на м-цу 3 типа слева Элементарные преобразования столбцов м-цы А 1 умножение м-цы А на м-цу 1 типа справа переставляет столбцы с номерами I,j 2 Умножение м-цы А на м-цу второго типа справа равносильно умножению j столбца м-цы А на число В. 3 прибавление к j столбцу м-цы А ее I того столбца, умноженного на число С равносильно умножению м-цы А на м-цу 3 типа справа. 6. Определители С каждой квадратной матрицей связано некое число наз. определителем. Определителем м-цы второго порядка: наз число: а11(а22-а12(а21 Определитель м-цы третьего порядка: = = также можно восп правилами треугольника: Предположив, что определитель м-цы порядка меньше n уже известен, определитель м-цы порядка n будет равен: D= a11(M11-a21(M21+...+(-1)n+1(an1(Mn1 где Мi1 - определитель м-цы порядка n-1, это число называется дополнительным минором. Подобная м-ца получается из А путем вычеркивания 1 столбца и j строки. Это называется разложением определителя по 1 ому столбцу. число: Аij=(-1)I+1(Mij называется алгебраическим дополнением эл-та аij в определителе [А] с учетом алгебр. доп ф-лу нахождения определителя можно записать так: Определитель - сумма попарных произведений эл-тов произвольного столбца на их алгебраический дополнитель. 7. Свойства определителя 1 При транспонировании матрицы определитель не изменяется: [AT]=[А] отсюда вытекает, что строка и столбец равноправны с точки зрения свойств определителя. 2 Линейность Если в определителе D I является линейной комбинацией 2-х строк: тогда D=fD'+lD'' где: отличаются от D только I-тыми строками. 3 Антисимметричность если определитель В* получен из опр В перестановкой строк, то В* = -В 4 Определитель матрицы с двумя одинаковыми строками равен 0 5 Умножение строки определителя на число равносильно умножению самого определителя на это число 6 определитель с 0 строкой = 0 7 определитель, одна из строк которого = произв другой строки на число не равное 0 = 0. (Число выносится за определитель далее по св-ву 4) 8 Если к строке определителя прибавить другую его строку, умноженную на какое либо число, то полученный определитель будет равен исходному. 9 Сумма произведения эл-тов строки определителя на алгебр. дополнение соответствующих элементов другой строки опр = 0 8. Обратная матрица Квадратная матрица наз. невырожденной, если ее определитель не равен 0. М-ца В, полученная из невырожд м-цы А по правилу: В позицию ij м-цы В помещается число = алгебраическому дополнению м-цы Aji, эл-та аji в м-це А. М-ца В наз. союзной или присоединенной к м-це А и обладает следующими св-вами: АВ=ВА=[А]I (I-единичная матрица) Матрица А-1=1/[А]В называется обратной м-це А. Отсюда вытекает равенство: АА-1=I, А-1А=I М-цу А-1 можно рассматривать как решение 2х матричных уравнений АХ=I, ХА=I, где - неизвестная матрица. Произвольную невырожденную м-цу элементарными преобразованиями строк можно привести к единичной матрице 1 Привести к треугольному виду 2 Диагональ матрицы пр
Умар.Ш. был тут !!!!!
 
давайте изгоним мат !!!
 
ДОБРОЙ НОЧИ ОТ Ъ
ЛОКИ ИНО
 
ДМК МЭ
 
где инфааа?