Новости Словари Конкурсы Бесплатные SMS Знакомства Подари звезду
В нашей
базе уже
59876
рефератов!
Логин

Пароль

Усложнение решающего правила при управлении в задачах распознавания об

Усложнение решающего правила при управлении в задачах распознавания об.
Усложнение решающего правила при управлении в задачах распознавания образов
Бекмуратов К.А.

В работе [1] описан метод формирования пространства непрерывных признаков, приводящий к безошибочному разделению образов. Введено понятие непрерывного признака и показано, что если набирать пространство только из определенных в [1] признаков, то можно достичь безошибочного разделения  образов.
В данной работе так же, как и в [2], рассмотрим случай, когда в пространстве непрерывных признаков размерности n безошибочное разделение обучающей последовательности невозможно.
Пусть на некотором множестве  мощности  объектов  определены подмножества  при , представляющие собой образы на обучающей выборке    
Допустим, что  - подмножество на  , соответствующее конкретному образу , а  - подмножество на  , соответствующее остальным   образом
Требуется с использованием обучающую выборки  найти решающее правило , указывающее принадлежность  любого объекта из  одному   
из заданных образов  или  с вероятностью ошибки,  не превышающей ,  достигаемой с надежностью (1-), и определить целесообразности усложнения решающих правил при синтезе непрерывных признаковых пространств.
Если обучающая последовательность не может быть безошибочно разделима выбранным решающим правилом, то в общем случае справедлива теорема Вапника - Червоненкиса [3], смысл которой состоит в том, что если в n-мерном пространстве признаков решающее правило совершает  ошибок при классификации обучающей последовательности длины   , то с вероятностью можно утверждать, что вероятность ошибочной классификации составит величину, меньшую ,
,
где N- число всевозможных правил заданного класса, которое можно построить в пространстве заданной размерности.
Предположим, что в процессе обучения из последовательно поступивших непрерывных свойств относительно  опорных объектов  синтезирована подсистема непрерывных признаков. В зависимости от состава случайной и независимой выборки процесс обучения может остановиться при любом значении n, но если разделение конкретной обучающей выборки наступило в n-мерном пространстве, то число N всевозможных решающих правил в классе не должно превышать числа всех подмножеств множества, состоящего из элементов, т.е.
,                                                      
где                                                   
.
Логарифмируя получим
                                       (1)
Если учесть    , то  (1) принимает вид
,                                 (2)
где  можно оценить в виде
                                       (3)
Подставляя (3) в (2), получаем
                                                   (4)
Используя теорему Вапника-Червоненкиса [3], можно вычислить предельную размерность пространства
,                                                    (5)
которая при заданных  гарантирует требуемые e и h.
Пусть вычислено максимально допустимое значение размерности пространства  в виде (5) и в этом пространстве фиксирована линейная решающая функция
                                                               (6)
Далее, для того чтобы в процессе обучения синтезировать пространство, в котором линейное решающее правило (6) безошибочно разделило бы обучающую выборку  длины , и при этом размерность пространства не превышала бы , необходимо на признаки  наложить дополнительные требования.  Зная предельную размерность простанства  (8), можно оценить минимально допустимую разделяющую силу каждого выбираемого признака  в виде

Минимально допустимая разделяющая сила признака позволяет при синтезе непрерывного пространства использовать не все признаки, а выбирать только те, разделяющая сила которых удовлетворяет неравенству

Допустим, что в синтезированном пространстве непрерывных признаков размерности n линейная решающая функция (9) совершает ошибки с частотой . Тогда рассмотрим соотношение
,                                       (7)
где N* - соответствует решающему правилу, работающему с частотой ошибки , N**- безошибочно разделяющая обучающая последовательность длины .
С использованием этого  соотношения, можно установить целесообразность усложнения решающего правила в случае, если в пространстве размерности n ещё не достигнуто безошибочное разделение обучающей выборки.
Известно [3], что если вместо линейного правила используется кусочно-линейное и оно безошибочно разделяет обучающую выборку длины l, то в со
Умар.Ш. был тут !!!!!
 
давайте изгоним мат !!!
 
ДОБРОЙ НОЧИ ОТ Ъ
ЛОКИ ИНО
 
ДМК МЭ
 
где инфааа?