Новости Словари Конкурсы Бесплатные SMS Знакомства Подари звезду
В нашей
базе уже
59876
рефератов!
Логин

Пароль

Алгебраические расширения полей

Алгебраические расширения полей.
Алгебраические расширения полей
Введение.
Краткое содержание реферата: «Алгебраические расширения полей» 1. Простое алгебраическое расширение поля. 1.1.Простое расширение поля. 1.2.Минимальный полином алгебраического элемента. 2.Составное алгебраическое расширение поля. 2.1. Конечное расширение поля. 2.2. Составное алгебраическое расширение поля.   2.3. Простота составного алгебраического расширения поля. 2.4. Поле алгебраических чисел. 2.5. Алгебраическая замкнутость поля алгебраических чисел. 3. Сепарабельные и несепарабельные расширения. 4. Бесконечные расширения полей. 4.1. Алгебраически замкнутые поля
На наш взгляд, наиболее целесообразным является введение в школьное преподавание элементов современной абстрактной алгебры.
Начавшийся в ХХ веке процесс алгебраизации математики не прекращается, а это вызывает упорные попытки введения в школьное математическое образование основных алгебраических понятий.  
Математическая глубина и необычайно широкая сфера применения полей сочетаются с простотой ее основных положений – понятий полей, целый ряд важных теорем можно сформулировать и доказать, обладая начальными представлениями в области теории множеств. Поэтому теория полей как нельзя лучше подходит для того, чтобы показать школьникам образец современной математики.
Кроме того, изучение элементов теории поля полезно для школьников, способствует их интеллектуальному росту, проявляющемуся в развитии и обогащении различных сторон их мышления, качеств и черт личности, а также воспитанию у учащихся интереса к математике, к науке.
1. Простое алгебраическое расширение поля.
1.1.Простое расширение поля.
Пусть P[x] — кольцо полиномов от x над полем P, где P — подполе поля F. Напомним, что элемент a поля F называется алгебраическим над полем P, если a является корнем какого-нибудь полинома положительной степени из P [x].
Определение. Пусть P < F и a0F. Простым расширением поля P с помощью элемента a называется наименьшее подполе поля F, содержащее множество Р и элемент a. Простое расширение P с помощью a обозначается через P (a), основное множество поля P (a) обозначается через Р(a).
Пусть a0F, P [x] — кольцо полиномов от x и
P[x]={f(a)*f0P[x]},
т. е. P [a] есть множество всех выражений вида a0 + a1a+...+ anan, где а0, a1,...an0P и n — любое натуральное число.
Легко видеть, что алгебра +P[a], +, —, ., 1, — подкольцо поля P (a) — является кольцом; это кольцо обозначается символом P [a].
Теорема 1.1. Пусть P [x]— кольцо полиномов от х над P и P (a)— простое расширение поля P. Пусть y — отображение P[x] на P[a] такое, что y(f)=f(a) для любого f из P[x]. Тогда:
(а) для любого а из Р y (а) = а;
(b) y(x) = a;
(с) y является гомоморфизмом кольца P [x] на кольцо P [a];
(d) Ker y ={f0P[x]*f(a)=0};
(е) фактор-кольцо P [x]/Кег y изоморфно кольцу P [a].
Доказательство. Утверждения (а) и (Ь) непосредственно следуют из определения y. Отображение y сохраняет главные операции кольца P [x], так как для любых f и g из P[x]
y(f + g)=f(a)+g(a), y(fg)= f(a)g(a), y(1)=1.
Далее, по условию, y есть отображение Р[х] на Р[a]. Следовательно, y является гомоморфизмом кольца P [x] на кольцо P [a].
Утверждение (d) непосредственно следует из определения отображения y.
Поскольку y — гомоморфизм кольца P [x] на P [a], то фактор-кольцо P[x]/Кег y изоморфно кольцу P [a].
Следствие 1.2. Пусть a — трансцендентный элемент над полем P. Тогда кольцо полиномов P [x] изоморфно кольцу P [a].
Доказательство. В силу трансцендентности a над P Kery={0}. Поэтому P[x]/{0}– P [a]. Кроме того, фактор-кольцо кольца P [x] по нулевому идеалу изоморфно P [x]. Следовательно, P [x]– P [a].
1.2.Минимальный полином алгебраического элемента.
Пусть P [x] — кольцо полиномов над полем P.
Определение. Пусть a — алгебраический элемент над полем P. Минимальным полиномом элемента a, над P называется нормированный полином из P[x] наименьшей степени, корнем которого является a. Степень минимального полинома называется степенью элемента a над P.
Легко видеть, что для всякого элемента a, алгебраического над P , существует минимальный полином.
Предложение 1.3. Если а — алгебраический элемент над полем P, а g и j — его минимальные полиномы над P, то g=j.  
Доказательство. Степени минимальных полиномов g и j совпадают. Если g ? j, то элемент a (степени n над P) будет корнем полинома g - j, степень которого меньше степени полинома j (меньше n), что невозможно. Следовательно, g=j.  
Теорема 1.4. Пусть a — алгебраический элемент степени n над полем P (aoP) и g — его минимальный полином над P. Тогда:
(а) полином g неприводим в кольце P [x];
(b) если f (a) = 0, где f 0 P[x], то g делит f;
(с) фактор-кольцо P [x]/(g) изоморфно кольцу P [a];
(d) P [x]/(g) является полем;
(е) кольцо P [a] совпадает с полем P (a).
Доказательство. Допустим, что полином g приводим в кольце P [x], т. е. существуют в P[x] такие полиномы j и h, что
g = jh, 1?deg j, deg h1 над полем P; f и h — полиномы из кольца полиномов P [x]и h(a) ?0. Требуется представить элемент f(a)/h(a)0P(a) в виде линейной комбинации степеней элемента a, т. е. в виде j(a),
где j0P[x].
Эта задача решается следующим образом. Пусть g — минимальный полином для a над P. Так как, по теореме 1.4, полином неприводим над P и h(a) ? 0, то g не делит h и, значит, полиномы h и g — взаимно простые. Поэтому существуют в P[x] такие полиномы u и v, что
uh+vg=1    (1)
Поскольку g(a) = 0, из (1) следует, что
u(a)g(a) = 1, 1/h(a) = u(a).
Следовательно, f(a)/h(a) = f(a)u(a), причем f,u 0P[x] и f(a)u(a)0P[a]. Итак, мы освободились от иррациональности в знаменателе дроби f(a)/h(a) .
Умар.Ш. был тут !!!!!
 
давайте изгоним мат !!!
 
ДОБРОЙ НОЧИ ОТ Ъ
ЛОКИ ИНО
 
ДМК МЭ
 
где инфааа?