Новости Словари Конкурсы Бесплатные SMS Знакомства Подари звезду
В нашей
базе уже
59876
рефератов!
Логин

Пароль

Законы непредсказуемости

Законы непредсказуемости.
Законы непредсказуемости
С. Панкратов

Нас всех подстерегает случай.
А.Блок
Классическая физика, манифестом которой стали знаменитые «Начала Ньютона», представляла мир как гигантский механизм, спроектированный по замыслу Всевышнего. Вселенная выглядела восхитительным автоматом, в котором не оставалось места случайности, и если случай все-таки время от времени подстерегал человека, то лишь вследствие его ошибок, нерадивости или невежественности.
Такой, в частности, была точка зрения выдающихся французских рационалистов XVII века, наиболее отчетливо выраженная в концепции «демона Лапласа» – гипотетического существа, которое способно с помощью законов Ньютона мгновенно вычислить траектории всех частичек мира и потому держит в руках абсолютно все связи между настоящим и будущим (а заодно и между прошлым и настоящим), или, как принято теперь говорить, причинно-следственные связи. Если Бог, с этой точки зрения, был Главным архитектором мира и Верховным законодателем природы, то лапласовский демон играл роль его «секретаря» – ведал обо всем и ничего не мог изменить.
Таким образом, рационалистический мир классической науки был абсолютно познаваем, и в принципе если бы всезнающий демон действительно существовал да еще кому-то удалось бы «втереться в доверие» к этому мифическому вычислителю, то можно было бы выведать у него все будущие и прошлые состояния нашего мира. Азартные игры, счастливые случайности и футбольные чемпионаты немедленно перестали бы существовать, такие науки, как футурология или описательная, регистрирующая история, отпали бы за ненадобностью, ну а гадалкам, астрологам, «биолокаторам» и «сверхперцепиентам» тем более нечего было бы делать.
Правда, человеческий опыт то и дело демонстрировал – иной раз болезненно и жестоко, – что природе скорее свойственны непредсказуемые причуды, нежели поведение раз и навсегда заведенного автомата. Капризы погоды, неожиданные социальные потрясения, внезапные экономические коллапсы – все это наблюдало большое число людей, и наблюдения отнюдь не свидетельствовали в пользу лапласовского детерминизма – жесткой предопределенности событий. Можно, однако, сказать, что философский детерминизм – это лишь теоретическая возможность, она не обязана сама собой реализоваться без наших усилий, да еще в крошечном, доступном наблюдению кусочке всего гигантского механизма Вселенной. Вот если бы, скажем, досконально знать распределение масс в игральной кости, да силы, которые на нее действуют со стороны всех на свете частиц, да начальное положение и скорость кости, которые определяются бросающей ее рукой, да проинтегрировать уравнение движения кости на мощном компьютере – вот тогда, возможно, и не нужно было бы использовать классическую схему теории вероятностей для вычисления шансов на благоприятный исход при игре в кости. Зачем говорить о случайности, если все можно вычислить?
Можно ли? В последнее время физики и математики стали в этом сомневаться. Оказалось, что даже очень простые физические объекты, например, пара шаров на бильярдном столе обнаруживает случайное поведение, и даже если собрать и обработать огромное количество информации, от случайности нельзя избавиться. Непредсказуемость принципиальна.
Заметьте, здесь речь идет о простых классических – неквантовых – системах. В квантовой механике случайность присутствует с самого начала – это отправная точка теории, а не факт, подлежащий объяснению. Именно вероятностный характер квантово-механических предсказаний, которые тем не менее замечательным образом оправдывались, нанес, пожалуй, самый сокрушительный удар по детерминизму Лапласа.  Эйнштейн, в частности, так до конца жизни и не принял, по-видимому, квантовую механику. «Настоящее колдовское исчисление» – назвал он однажды эту вероятностную теорию. Известно и другое его высказывание: «Бог не играет в кости». Неужели же сегодня привычная со школьных лет классическая механика, допуская непредсказуемость, тоже превращается в «колдовскую» науку? Сохраняются ли в ней правила, в соответствии с которыми будущее определяется настоящим, а настоящее – прошлым?
Ответ: да, такие правила существуют – это уравнения эволюции или динамические уравнения (в частности, ньютоновы законы движения). И все же поведение многих физических объектов, описываемых такими уравнениями, – динамических систем – через какое-то время становится совершенно непредсказуемым. Например, атмосфера – типичная динамическая система, ее эволюция жестко задана известными уравнениями, однако предвидеть ее состояние через месяц – то есть сделать безошибочный прогноз погоды на месяц вперед – практически невозможно, какой бы мощный суперкомпьютер ни был в нашем распоряжении. Прогноз погоды может быть только вероятностным, а парадоксальную, порождаемую известными динамическими уравнениями – жестким алгоритмом поведения, – случайность с недавних пор стали называть детерминированным хаосом.
Вообще сегодня в физике рассматривается случайность двух типов (речь сейчас не идет о квантовой неопределенности).
Первый тип случайности возникает тогда, когда частиц, степеней свободы, событий или предметов так много, что во всем этом совершенно невозможно разобраться. Например, газ в литровой банке содержит примерно 1022 молекул, и ни одной ЭВМ не под силу рассчитать траектории такого числа сталкивающихся друг с другом частиц. Но даже если бы с помощью какого-нибудь фантастического суперкомпьютера и удалось бы проинтегрировать все «зацепляющиеся» уравнения движения в общем виде, то совершенно невозможно было бы подставить в решение уравнений конкретные начальные условия – координаты и скорости всех 1022 молекул в некоторый выбранный нами момент, хотя бы из-за необходимых для этого времени и бумаги. Именно поэтому для описания «больших» – макроскопических – систем физики используют усредненные статистические или термодинамические характеристики, такие, как температура, давление, свободная энергия, и некоторые другие.
Другой тип случайности сегодня ассоциируется с именем выдающегося французского математика Анри Пуанкаре, который, по-видимому, был первым, кто предвосхитил современный взгляд на хаос, обратив внимание на чрезвычайную «чуткость» неустойчивых динамических систем – сколь угодно малые неопределенности в их состоянии усиливаются со временем, и предсказания будущего становятся невозможными.
Статистические системы преимущественно основаны на классической схеме теории вероятностей, и чтобы найти интересующие нас вероятности, нужно проделать простые комбинаторные вычисления. Скажем, вероятность падения симметричной монеты какой-то одной стороной кверху равно 1/2 (просто из соображений симметрии). Вероятность рождения мальчика, как показывает опыт, несколько больше 1/2 и по каким-то загадочным причинам способна претерпевать внезапные скачки, сопряженные с глобальными изменениями условий жизни,
Умар.Ш. был тут !!!!!
 
давайте изгоним мат !!!
 
ДОБРОЙ НОЧИ ОТ Ъ
ЛОКИ ИНО
 
ДМК МЭ
 
где инфааа?