Новости Словари Конкурсы Бесплатные SMS Знакомства Подари звезду
В нашей
базе уже
59876
рефератов!
Логин

Пароль

Что такое синергетика

Что такое синергетика.
Что такое синергетика
Введение
Краткое содержание реферата: «Что такое синергетика» 1. Физические системы Диссипативные системы  Распределенные системы  Реакция Белоусова-Жаботинского  Турбулентность  Диффузный рост  2. Информационные системы  Клеточные автоматы Автоматы - колонии  Память и распознавание образов  Решение оптимизационных задач  Генетические алгоритмы  Заключение 
-Да! Немедленно!-воскликнули инженеры.
-Сорок два,с беспредельным спокойствием сообщил компьютер.
(Дуглас Адаме, Руководство для путешествующих автостопом по галактике)
Существует целый класс задач, которые состоят в описании поведения сложных систем, при решении которых изучение поведения отдельных элементов системы не позволяет эффективно описать процессы, идущие в системе на макроуровне. Речь в данном случае идет о процессах самоорганизации, хаотическому возникновению в различных средах упорядоченных структур за счет подвода к ним энергии.  
С другой стороны, хотя подобные системы имеют совершенно различную природу, число математических моделей, которые используются для описания процессов в них невелико. То есть, там, где присутствует упорядоченность, внутренняя сложность макросистем не проявляется, они ведут себя схожим образом. Собственно синергетика занимается поиском и изучением моделей сложных систем, вопросами возникновения порядка из хаоса и перехода от упорядоченных структур к хаотическим.  
В качестве примеров самоорганизующихся систем можно назвать поток жидкости, который по мере увеличения скорости перестает быть ламинарным, в нем образуются сложные упорядоченные структуры. При дальнейшем увеличении скорости течения выделить упорядоченность становится все сложнее и поток приобретает хаотичный вид. К сложным самоорганизующимся системам относятся живые организмы любого уровня, от клеток до социумов. В неживом мире примеры самоорганизации также можно найти везде, вплоть до крупномасштабного строения вселенной [15]...
1. Физические системы
Последние несколько десятилетий развития физики показали, что упорядоченность образуется в открытых системах (обменивающихся веществом и энергией с окружающей средой), находящихся в неравновесном состоянии. Такие системы обычно оказываются неустойчивыми, не всегда возвращаются к начальному состоянию. Им свойственно наличие бифуркационных точек, где нельзя однозначно предсказать дальнейшую эволюцию системы. При этом малое воздействие на систему может привести к значительным непредсказуемым последствиям (к раскрытию неустойчивости). В открытых системах, далеких от равновесия, возникают эффекты согласования, когда элементы системы кореллируют свое поведение на макроскопических расстояниях через макроскопические интервалы времени. В результате согласованного взаимодействия происходят процессы возникновения из хаоса определенных структур, их усложнения.  
Собственно синергетика возникла из объединения трех направлений исследований: разработки методов описания существенно неравновесных структур, разработки термодинамики открытых систем и определения качественных изменений решений нелинейных дифференциальных уравнений.
Диссипативные системы 
Открытые системы, в которых наблюдается прирост энтропии, называют диссипативными. В таких системах энергия упорядоченного движения переходит в энергию неупорядоченного хаотического движения, в тепло. Если замкнутая система (гамильтонова система), выведенная из состояния равновесия, всегда стремится вновь придти к максимуму энтропии, то в открытой системе отток энтропии может уравновесить ее рост в самой системе и есть вероятность возникновения стационарного состояния. Если же отток энтропии превысит ее внутренний рост, то возникают и разрастаются до макроскопического уровня крупномасштабные флюктуации, а при определенных условиях в системе начинают происходить самоорганизационные процессы, создание упорядоченных структур.  
При изучении систем, их часто описывают системой дифференциальных уравнений. Представление решения этих уравнений как движения некоторой точки в пространстве с размерностью, равной числу переменных называют фазовыми траекториями системы. Поведение фазовой траектории в смысле устойчивости показывает, что существует несколько основных его типов, когда все решения системы в конечном счете сосредотачиваются на некотором подмножестве. Такое подмножество называется аттрактором. Аттрактор имеет область притяжения, множество начальных точек, таких, что при увеличении времени все фазовые траектории, начавшиеся в них стремяся именно к этому аттрактору. Основными типами аттракторов являются устойчивые предельные точки, устойчивые циклы (траектория стремится к некоторой замкнутой кривой) и торы (к поверхности которых приближается траектория). Движение точки в таких случаях имеет периодический или квазипериодический характер. Существуют также характерные только для диссипативных систем так называемые странные аттракторы, которые, в отличие от обычных не являются подмногообразиями фазового пространства (не вда-ваясь в подробности, замечу, что точка, цикл, тор, гипертор - являются) и движение точки на них является неустойчивым, любые две траектории на нем всегда расходятся, малое изменение начальных данных приводит к различным путям развития. Иными словами, динамика систем со странными аттракторами является хаотической.  
Уравнения, обладающие странными аттракторами вовсе не являются экзотическими. В качестве примера такой системы можно назвать систему Лоренца, полученную из уравнений гидродинамики в задаче о термоконвекции подогреваемого снизу слоя жидкости.
Замечательным является строение странных аттракторов. Их уникальным свойством является скейлинговая структура или масштабная самоповторяемость. Это означает, что увеличивая участок аттрактора, содержащий бесконеч
Умар.Ш. был тут !!!!!
 
давайте изгоним мат !!!
 
ДОБРОЙ НОЧИ ОТ Ъ
ЛОКИ ИНО
 
ДМК МЭ
 
где инфааа?