Новости Словари Конкурсы Бесплатные SMS Знакомства Подари звезду
В нашей
базе уже
59876
рефератов!
Логин

Пароль

Электрооптические методы измерения высоких напряжений и больших токов 2990

Электрооптические методы измерения высоких напряжений и больших токов 2990.
Электрооптические методы измерения высоких напряжений и больших токов



Московский ордена Ленина, ордена Октябрьской Революции и ордена Трудового Красного Знамени ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени Н.Э.Баумана. ______________________________________________________ Факультет РЛ Кафедра РЛ2 Реферат по дисциплине "Лазерные оптико-электронные приборы" студента Майорова Павла Леонидовича, группа РЛ3-101. Руководитель Немтинов Владимир Борисович Тема реферата: "Оптическая обработка информации" Вступление Современная практика и научные исследования требуют измерений высоких и сверхвысоких напряжений - до 10 МВ и больших токов - до 1(2 МА. Напряжения и токи при этом могут быть постоянными, переменными, и импульсными с длительностью импульсов от долей микросекунд до нескольких десятков миллисекунд. Измерение больших постоянных токов - до 200(500 кА широко используется в устройствах электролиза алюминия. Большие переменные токи - до 150(200 кА имеют место в мощных дуговых электропечах. Работают линии электропередачи с напряжением 1,2(1,5 МВ, проектируются линии передачи и энергетические устройства на более высокие напряжения. В термоядерных установках токи достигают сотен килоампер. В ряде случаев необходимо проводить измерения при сверхнизких и высоких температурах, например, в криотурбогенераторах или криомодулях высокоскоростных транспортных средств на магнитной подушке, при исследовании плазменных и термоядерных источников энергии. Электрооптические методы измерений высоких напряжений и больших токов Быстрое развитие линий электропередачи и электрофизических устройств высокого и сверхвысокого напряжения (1200 кВ и выше) обусловило появление новых методов измерений, не требующих создания дорогостоящих и громоздких изоляционных устройств на полное рабочее напряжение. Перспективными являются электрооптические методы, основанные на преобразовании измеряемых электрических величин в параметры оптического излучения и применении оптических каналов связи для передачи измерительной информации из зоны высокого напряжения на низковольтную часть измерительного устройства. Преимуществами этих методов являются высокое быстродействие, защищенность от электромагнитных помех, а также надежная естественная электрическая изоляция между высоковольтной и вторичной измерительными цепями вследствие их полной электрической развязки. Электрооптические методы разделяются на методы с внутренней модуляцией, при которых сигнал измерительной информации непосредственно воздействует на источник оптического излучения, изменяя параметры его излучения, и методы с внешней модуляцией, основанные на воздействии измеряемой величины непосредственно на оптическое излучение от внешнего стабильного источника. Рис. 1. При измерении методами с внутренней модуляцией (рис. 1) источник оптического излучения 2 (например, светодиод) и первичный преобразователь 1 (шунт, измерительный трансформатор и др.) находятся под высоким напряжением, а приемник оптического излучения 4 и вторичное измерительное устройство 5 имеют потенциал Земли. В качестве оптического канала связи 3 между источником и приемником излучения применяются высоковольтные волоконные жесткие или гибкие световоды, которые обеспечивают надежную изоляцию измерительных устройств от высоковольтной цепи. Методы с внешней модуляцией основаны на использовании электрооптических и магнитооптических эффектов, главным образом электрооптических эффектов Керра и Поккельса - для измерения напряженности электрического поля и напряжения, а также магнитооптического эффекта Фарадея - для измерения токов. Время релаксации, свойственное электро- и магнитооптическим эффектам, составляет менее 10-10 с, поэтому на основе этих эффектов можно создать быстродействующие средства измерений постоянных, переменных и импульсных токов и напряжений, а также современные быстродействующие устройства защиты. Использование эффекта Фарадея Эффект Фарадея заключается во вращении плоскости поляризации линейно поляризованного света в оптически активных веществах под действием магнитного поля. Угол поворота плоскости поляризации света где CB - постоянная Верде; l - длина пути света в веществе; В - магнитная индукция. Измеряя угол поворота плоскости поляризации света, можно определить индукцию магнитного поля или силу тока, если преобразователь поместить в магнитном поле измеряемого тока. Рис. 2. Уравнение, записанное выше, справедливо для составляющей индукции Вl, направленной вдоль пути света. Знак угла ( зависит от направления вектора магнитной индукции, но не зависит от направления света, что позволяет увеличить угол (, если свет многократно пропускать через ячейку Фарадея. Как и в других методах, основанных на измерении магнитной индукции поля, создаваемого измеряемым током, при использовании эффекта Фарадея основными составляющими погрешности измерения тока являются погрешность преобразования измеряемого тока в магнитную индукцию и погрешность измерения магнитной индукции. При использовании эффекта Фарадея измерение магнитной индукции сводится к измерению поворота плоскости поляризации света, которое обычно осуществляя методами прямого или уравновешивающего преобразования. При применении метода прямого преобразования свет от лазера 1 направляется к преобразователю Фарадея 8 (рис. 2). При этом поляризатор 2 и анализатор 4 могут быть расположены непосредственно у магнитооптического образца, что позволяет использовать оптические каналы связи 5 в виде обычных волоконных световодов. Выходным сигналом устройств, построенных на основе метода прямого преобразования, является фототок или выходное напряжение. где RН - сопротивление нагрузки фотоприемника; SФ - чувствительность фотоприемника; J2 - интенсивность светового потока на входе фотоприемника, которая в соответствии с законом Малюса равна Рис. 3, а. Рис 3, б. Рис. 3, в. Рис. 3, г. Рис. 3, д. Рис. 3, е. здесь J1 - интенсивность света на входе анализатора; ( - угол между поляризатором и анализатором; ( - угол поворота плоскости поляризации, При (=45( или при малых углах ( При углах (=7( погрешность линейности составляет 1%. На рис. 3 показаны различные виды магнитооптических преобразователей Фарадея. Самый простой преобразователь состоит из магнитооптического элемента 2, расположенного у провода 1 с измеряемым током (рис. 3, а). Уменьшения влияния внешних магнитных полей и увеличения чувствительности средств измерений, основанных на использовании эффекта Фарадея, к току можно достигнуть путем увеличения коэффициента преобразования , применяя соленоид (рис. 3, б) или ферромагнитный магнитопровод 3 с магнитооптическим элементом 2, ох
Умар.Ш. был тут !!!!!
 
давайте изгоним мат !!!
 
ДОБРОЙ НОЧИ ОТ Ъ
ЛОКИ ИНО
 
ДМК МЭ
 
где инфааа?